Россия, Иркутская область, д. Шаманаева, Трактовая улица, 2, 1 этаж
Телефон:
+7 (395) 239-99-35
Пн-пт: 09:00—19:00
whatsapp telegram vk email

Усилитель звука класса тд что это такое

Классы усилителей звука

image

Наверняка многие слышали о том, что современные усилители могут относиться к разным классам. Однако люди, далекие от акустических систем и технических особенностей звуковой аппаратуры, вряд ли представляют, что скрывается за буквенными обозначениями.

В нашем обзоре мы подробнее расскажем о том, что такое классы усилителей, какими они бывают, и как подобрать оптимальную модель.

Классификация

Класс усилителя — это величина выходящего сигнала, при которой он в функциональной схеме на протяжении одного рабочего цикла приводится в действие синусоидальным входящим сигналом и в результате этого воздействия изменяется. Классификация усилителей по классам зависит от параметров линейности режима, используемого для усиления поступающих сигналов от категорий с повышенной точностью при довольно сниженной эффективности до абсолютно нелинейных. В этом случае точность звуковоспроизведения сигнала не столь велика, зато КПД довольно высок. Все остальные классы усилителей являются некими промежуточными моделями между этими двумя группами.

Первая группа

Все классы усилителей условно можно разделить на две подгруппы. К первой относятся классические управляемые модели классов A, B, а также AB и C. Их категория обусловлена параметром их проводимости на определенном участке выходного сигнала. Таким образом, работа встроенного транзистора на выходе располагается посредине между «выкл» и «вкл».

Вторая группа

Ко второй категории устройств относят более современные модели, которые считаются так называемыми переключающимися классами — это модели D, E, F, а также G, S, H и T.

Эти усилители применяют в работе широтно-импульсную модуляцию, а также цифровые схемы для беспрерывного переведения сигнала между «полностью выкл» и «полностью вкл». Как следствие, происходит мощный выход в районе насыщения.

Описание популярных классов

О разных классах усилителей мы поговорим более подробно.

Модели класса А получили наибольшее распространение благодаря простоте их конструкции. Это объясняется несколькими параметрами искажения входящего сигнала и, соответственно, высоким качеством звучания в сравнении со всеми остальными категориями усилительных установок. Модели, относящиеся к этой категории, характеризуются высокой линейностью по сравнению с прочими.

Обычно усилители класса А в своей работе используют единый вариант транзисторов. Его подключают к базовой конфигурации эмиттера для двух половин сигнала так, что германиевый транзистор неизменно идет сквозь него даже в том случае, если фазовый сигнал отсутствует. Это значит, что на выходе каскад не станет в полной мере проходить в область отсечки сигнала и насыщения. Он имеет собственную точку смещения примерно в центральной части линии нагрузки. Такое строение приводит к тому, что транзистор попросту не активируется — именно это считается одним из его базовых недостатков.

Чтобы устройство можно было классифицировать, как относящееся к этому классу, нулевой ток на холостом ходу в выходном каскаде должен равняться предельному току нагрузки либо даже превышать его — это позволяет обеспечить максимальный выходящий сигнал.

Поскольку устройства класса А относятся к однотактным и функционируют в линейной зоне всех заданных кривых, одно выходное устройство проходит через полные 360 градусов, в этом случае устройство категории А в полной мере соответствует источнику тока.

Поскольку усилители этой категории работают, как мы уже говорили, в ультралинейной области, то смещение постоянного тока должно быть установлено корректно — это позволит обеспечивать исправную работу и дает звуковой поток мощностью 24 Вт. Однако в связи с тем, что выходное устройство все время находится в отключенном состоянии, оно беспрерывно проводит ток, и это создает условия для постоянной потери мощности во всей конструкции. Такая особенность приводит к выделению большого объема тепла, при этом их КПД довольно низок — не превышает 40%, что делает их непрактичными, если речь идёт о каких-то мощных акустических системах. Помимо того, из-за повышенного тока холостого хода установки, блок питания должен иметь соответствующие габариты и быть максимально отфильтрован, в противном случае не избежать звучания усилителя и стороннего гула. Именно эти недостатки привели к тому, что производители вынуждены были продолжить работу над созданием усилителей более эффективной категории.

Усилители класса B были созданы производителями для решения проблем, связанных с низким КПД и повышенным уровнем перегрева, которые свойственны установкам предыдущей категории. В своей работе модели категории В применяют пару дополнительных транзисторов, как правило, биполярных. Их отличие в том, что для обеих половин сигнала выходной фронт построен по двухтактной схемотехнике, таким образом каждое транзисторное устройство дает усиление лишь наполовину выходного сигнала.

Базовый ток смещения уровня постоянного тока в усилителях этого класса отсутствует, поскольку ток его покоя равняется нулю, поэтому мощностные параметры постоянного тока обычно малы. Соответственно, и КПД его гораздо выше, нежели у устройств А. При этом когда сигнал принимает положительное значение, транзистор с положительным смещением ведет его, а отрицательный остаётся в выключенном состоянии. Аналогично в момент, когда входящий сигнал принимает отрицательное значение, положительный отключается, а отрицательно смещённый транзистор, наоборот, активируется и обеспечивает проведение отрицательной половины сигнала. В результате транзистор во время своей работы проводит 1/2 цикла только в положительном либо в отрицательном полупериоде поступающего сигнала.

Соответственно, всякое транзисторное устройство этой категории может проходить только через часть выходного сигнала, при этом в четком чередовании.

Такая двухтактная конструкция примерно на 45-60% эффективнее, нежели усилители класса А. Тем не менее проблемы с моделями этого типа заключаются в том, что они дают существенные искажения в момент прохождения аудиосигнала из-за «мертвой зоны» транзисторов в коридоре входных напряжений со значениями от -0,7 В до +0,7 В.

Как все знают из курса физики, базовый эмиттер должен давать напряжение около 0,7 В для того, чтобы биполярный транзистор начал полноценную проводку. Пока это напряжение не превысит эту отметку, выходной транзистор не сместится до положения включения. Это значит, что половина сигнала, которая пойдёт в коридор 0,7 В, начнет воспроизводиться неточно. Соответственно, это делает устройства категории B практически непригодными для применения в прецизионных акустических установках.

Для того чтобы преодолеть эти искажения и были созданы так называемые компромиссные устройства класса AB.

Эта модель представляет собой некий тандем конструкции категории А и категории B. В наше время усилители типа AB считаются одними из самых распространенных вариантов конструкций. По принципу своей работы они немного напоминают изделия категории В, с тем только исключением, что оба транзисторных устройства могут в одно и то же время проводить сигнал возле точки пересечения осциллограмм. Это в полной мере устраняет все проблемы искажения сигнала предыдущего усилителя группы В. Разница состоит в том, что пара транзисторов имеет довольно малое напряжение смещения, как правило, оно составляет от 5 до 10% от параметров тока покоя. В этом случае проводящее устройство остаётся включённым дольше, чем время одного полупериода, но в то же время – это гораздо меньше, нежели полный цикл входного сигнала.

Можно с полной уверенностью сказать, что устройство типа AB считается отличным компромиссом между моделями класса А и моделями класса В с позиции КПД и линейности, в то время как эффективность трансформации звукового сигнала составляет приблизительно 50%.

Конструкция установок, относящихся к классу C, обладает максимальной эффективностью, но при этом довольно плохой линейностью в сравнении со всеми остальными категориями. Усилитель C-класса довольно заметно смещен, поэтому входной ток принимает нулевое значение и держится на этой отметке на протяжении более 1/2 цикла поступающего сигнала. В это время транзистор пребывает в режиме ожидания его выключения.

Подобная форма смещения транзистора обеспечивает наибольшую эффективность устройства, его КПД составляет порядка 80%, но при этом она вносит довольно значительные звуковые искажения в исходящий сигнал.

Такие конструкционные особенности делают невозможным применение усилителей в акустических системах. Как правило, эти модели нашли свою сферу использования в высокочастотных генераторах, а также отдельных вариантах радиочастотных усилителей, где импульсы тока, издаваемые на выходе, преобразуются в синусоидальные волны заданной частоты.

Усилитель категории D относится к двухканальным нелинейным импульсным моделям, их еще называют ШИМ-усилители.

В подавляющем большинстве аудиосистем выходные каскады функционируют в классах А либо АВ. В интегральных усилителях группы D мощность рассеивания линейных входов значительна даже в случае их максимально полной, практически идеальной реализации. Это дает моделям D-класса существенное преимущество в большинстве сфер применения вследствие минимального тепловыделения, снижения веса и габаритов устройства и, соответственно, пониженной стоимости изделий, притом что время автономной работы в таких моделях увеличено в сравнении с моделями других конструкций.

Как правило, это высоковольтные модели, они рассчитаны на плату в 10000 ватт.

Другие

Усилитель класса F. Эти модели обеспечивают повышенную эффективность, их КПД составляет порядка 90%.

Усилитель класса G. Этот усилитель, по сути, представляет собой усовершенствованную высоколинейную конструкцию базового устройства класса AB на ТДА. Модели, относящиеся к данной категории, могут выполнять автоматическое переключение между разными линиями питания в случае изменения параметров поступающего сигнала. Подобное переключение многократно уменьшает энергопотребление и, соответственно, уменьшает расход мощности, которые вызываются утратой тепла.

Усилитель класса I. Такие модели имеют пару комплектов дополнительных выходных приспособлений. Перед включением они располагаются в двухтактной конфигурации. Первое устройство выполняет переключение положительной части сигнала, а второе — отвечает за переключение отрицательной, подобно усилителям категории B. При отсутствии сигнала аудио на входе или в случае, если сигнал достигает нулевой точки пересечения, переключающий механизм включается и выключается в одно время с основным циклом.

Усилитель класса S. Данный класс усилителей относят к категории нелинейного механизма переключения. По механизму своей работы они в чем-то похожи на усилители категории D. Такой усилитель производит преобразование аналоговых входящих сигналов в цифровые, многократно усиливая их. Таким образом, чтобы повысить мощность на выходе, обычно цифровой сигнал переключающего устройства либо полностью включен, либо полностью выключен, поэтому КПД таких устройств может составлять 100%.

Усилитель класса T. Ещё один вариант цифрового усилителя. Сегодня такие модели набирают всё большую популярность из-за присутствия микросхем, позволяющих выполнять цифровую обработку поступающего сигнала, а также встроенных многоканальных усилителей 3D-звучания. Такой эффект обеспечивается конструкцией, позволяющей преобразовывать аналоговые сигналы в звуки повышенной ШИМ цифрового типа. Конструкция устройств класса C объединяет параметры сигнала с пониженной степенью искажений, подобного АВ категории, в то время как сохраняют КПД на уровне моделей класса D.

Как определить?

Для начала остановимся на том, как в принципе функционирует усилитель. Наверняка вы будете удивлены, но по факту заводской усилитель ничего не усиливает. По сути, механизм его работы напоминает работу самого простого крана: вы крутите ручку и вода из водопровода начинает литься, сильнее или слабее, а если ее закрутить — то поток будет перекрыт. В усилителях все процессы происходят таким же образом. От мощного модуля питания ток проходит сквозь подключенный к устройству динамик. В данном случае функцию крана берут на себя транзисторы — на выходе степенью их закрытия и открытия управляет сигнал, который проходит на усилитель. От того, как именно этот кран функционирует, то есть как действуют выходные транзисторы, и определяется класс усилителей.

Если мы говорим об устройствах АВ, то в них транзисторы могут иметь неприятное свойство открываться и закрываться непропорционально поступающим на них сигналам. Таким образом, их работа становится неизменной. Возвращаясь к аналогии с краном — вы можете поворачивать ручку краника, но вода сперва будет течь слабо, а затем вдруг поток внезапно усилится.

По этой причине транзисторы категории АВ приходится удерживать в приоткрытом состоянии даже в том случае, если сигнал отсутствует. Это необходимо для того, чтобы они начали работать сразу же, а не выжидали, пока сигнал дойдет до определённого уровня – только в этом случае усилитель сможет воспроизводить звук с минимальными искажениями. На практике это означает, что некоторая часть полезной энергии расходуется вхолостую. Только представьте, что вы откроете все водопроводные краны в квартире, и из них беспрерывно будет вытекать небольшая струйка воды. Как следствие, эффективность таких моделей не превышает 50-70%, именно низкий КПД и является главным минусом усилителей АВ класса.

Если говорить об устройствах D-класса, то принцип работы у них абсолютно такой же: они имеют свои выходные транзисторы, способные закрываться и открываться. Тем самым регулируется прохождение тока сквозь подведенные к ним динамики, вот только управляет их открытием уже сигнал, по своей конфигурации весьма далекий от входящего.

Именно так подается сигнал на выходные транзисторы устройств D-класса. В данном случае функционировать они станут совсем иначе: либо в полном объеме закрываться, либо открываться без каких-либо промежуточных значений. Это означает, что КПД таких моделей может быть приближен к 100%.

Конечно, передавать подобные сигналы на аудиосистемы рано, сперва ему следует вернуть стандартную конфигурацию. Это можно сделать посредством выходного дросселя, а также конденсатора — после их обработки на выходе формируется усиленный сигнал, который по своей форме полностью повторяет входящий. Именно он и передается на динамики.

Основное преимущество устройств D-класса – это повышенный КПД и, соответственно, более щадящее расходование энергии

Долгое время было принято считать, что для подключения качественных акустических установок оптимальным решением станут усилители АВ. Модели категории D давали преобразование поступающего сигнала в импульсный с пониженной частотой, в итоге он давал хорошее звучание только в сабвуферном режиме. В наши дни технологии сделали большой шаг вперед, и сегодня появились уже быстродействующие транзисторы, которые могут открываться, а также и закрываться почти моментально, в магазинах представлено довольно много широкополосных устройств D-класса.

Эти модели предназначены на применение не только с сабвуферами, но также и с современными акустическими системами любых типов. Для тех вариантов, когда высокой мощности не требуется, имеет смысл приобрести довольно компактный усилитель.

Таким образом, если для подключения АС у вас достаточно площади, то вы вполне можете подобрать модель АВ-класса. За несколько десятилетий существования схемотехника этих моделей хорошо отработана, они дают довольно хорошее качество звучания, а в случае их поломки вы можете без проблем отремонтировать их в ближайшем сервисном центре.

Если участок для звуковой инсталляции ограничен, то стоит присмотреться к широкополосным моделям группы D. При тех же мощностных параметрах, что и изделия АВ-класса, они гораздо меньше и легче, притом меньше греются, и некоторые модели позволяют даже устанавливать их скрытно с наименьшими вмешательствами.

Для подключения сабвуферов максимальное преимущество у установок D-класса, так как темброблок басов представляет собой наиболее энергозатратный частотный диапазон — в данном случае КПД изделия имеют принципиальное значение, а в этом конкурентов изделиям D класса попросту нет.

В данном видео вы сможете нагляднее ознакомиться с классами усилителей звука.

Преимущества цифровых усилителей мощности в сравнении с традиционными аналоговыми

Преимущества цифровых усилителей мощности в сравнении с традиционными аналоговыми

Усилитель мощности звуковой частоты (УМЗЧ), обычно называемый просто «усилитель» — это прибор, который превращает линейный звуковой сигнал (например, из выхода микшерного пульта) в электрический ток, который «раскачивает» громкоговорители в акустических системах. Ламповые усилители в настоящее время в профессиональном звукоусилении не применяются. Производимые сейчас транзисторные усилители мощности можно разделить на 2 основных группы: классы AB и H (будем называть их аналоговыми) и классы D и TD (их, соответственно, назовём цифровыми). Несмотря на то, что результат работы обоих групп усилителей одинаков, у них есть ряд важных отличий.

Аналоговые усилители массово производятся с 70-х годов прошлого века. Основные отличительные особенности усилителей этого класса — сравнительно болшие габариты и вес, и сравнительно низкий КПД (идеальный КПД усилителя класса AB — 78%, реальный может опускаться до 40% в зависимости от условий работы). В основном этим и обусловлены размеры корпуса аналоговых усилителей — система охлаждения в них может занимать до половины объёма корпуса. Вкратце, принцип работы аналогового усилителя сводится к тому, что выходной ток усилителя регулируется полупроводниковым прибором — биполярным транзистором (в реальных усилителях как правило, несколькими транзисторами, включенными параллельно). Потери электрической мощности при прохождении тока через биполярные транзисторы и являются причиной низкого КПД и большого тепловыделения усилителей этого класса.

Усилители класса D, называемые также «цифровые усилители», используют принципиально другой принцип работы. Выходной каскад из этих усилителей сформирован из полевых транзисторов, работающих в режиме широтно-импульсной модуляции — то есть, транзисторы либо полностью открыты (тогда их сопротивление составляет сотые доли ома), либо полностью закрыты. В результате потери электрической мощности в выходном каскаде практически отсутствуют, и КПД реальных серийно производимых цифровых усилителей может составлять до 95%. Соответственно, отсутствует необходимость в громоздкой системе охлаждения, и цифровые усилители получаются в несколько раз более компактными и лёгкими, чем их аналоговые собратья такой же мощности. Например, аналоговый усилитель Crown XLi 3500 занимает 2 рэковых высоты и весит 19,5 кг, цифровой усилитель KONANlabs DA-1000 занимает 1 рэковую высоту и весит всего 3,8 кг, при одинаковой мощности — 2х1000 Вт на 8-омной нагрузке.

Строго говоря, называть все усилители класса D цифровыми — не совсем корректно, поскольку технически возможно реализовать усилитель мощности на основе широтно-импульсной модуляции полностью аналоговым способом. Бюджетные модели усилителей D-класса обычно полностью аналоговые, а в дорогих сериях для формирования высокочастотных импульсов, которые управляют выходным каскадом, применяется система цифровой обработки сигнала (DSP). То есть, не все усилители класса D являются цифровыми, но все цифровые усилители являются усилителями D-класса (или одним из его вариантов — класса T, J, TD и т. д.). Основная разница между аналоговыми и цифровыми усилителями класса D состоит в том, что аналоговая схема вносит несколько больше нелинейных искажений, с использованием же цифровой обработки получается добиться искажений не больших, чем в самых качественных усилителях класса AB при существенно меньших габаритах и весе, и большей энергоэффективности.

Существует распространёное мнение, что аналоговые усилители безусловно «лучше звучат», чем цифровые, однако, объективности в этой точке зрения не больше, чем в обожествлении «тёплого лампового звука». Во-первых, если говорить не о высоких материях, а о реально существующих приборах — в обоих группах существуют как низкобюджетные, при разработке и производстве которых основным критерием была экономия, так и устройства Hi-End, бескомпромиссные как по звучанию, так и по стоимости. Во-вторых, обсуждать «качество звучания» усилителя не имеет смысла в отрыве от всей системы звукоусиления, каждый из элементов которой — начиная от микрофонов и заканчивая отделкой помещения — представляет собой компромисс между пожеланиями заказчика и его финансовыми возможностями. Таким образом, даже если на лабораторном стенде отдельные параметры какого-то конкретного аналогового усилителя окажутся «лучше», чем параметры какого-то конкретного цифрового усилителя — в реальных условиях это различие скорее всего не будет заметно на слух. Основные же преимущества цифровых усилителей — высокий КПД и малые габариты и вес — очевидны каждому.

Ещё одной перспективной разработкой являются усилители класса TD. Если не вдаваться в технические детали — усилители этого класса используют «аналоговый» выходной каскад класса AB, питание которого осуществляет отдельная подсистема, работающая по принципу усилителя класса D. В результате получилось создать усилитель, обеспечивающий «аналоговое» качество звучания при КПД и массогабаритных показателях, близких к цифровым УМЗЧ.

Наши специалисты с удовольствием помогут вам приобрести, установить и настроить лазерное, световое, звукоусилительное и другое оборудование для ночных клубов, караоке, ресторанов, концертных и актовых залов в Ставрополе, Краснодаре, Москве, Санкт-Петербурге, Сочи, Ростове-на-Дону, Нальчике, Грозном, Черкесске, Владикавказе, Махачкале, Элисте, Волгограде, других городах ЮФО, СКФО и республики Крым.

Классы усилителей

Усилители класса B

Усилители класса B являются двухтактными: одно плечо усилителя (npn-транзистор) воспроизводит положительную полуволну, другое плечо (pnp-транзистор) — отрицательную. На выходе обе полуволны складываются, формируя минимально искажённую усиленную копию входного сигнала. Ток покоя выходных транзисторов в режиме B составляет 10…100мА на каждый транзисторный каскад.

Предельный КПД идеального каскада в режиме B на синусоидальном сигнале равен 78,5%, реального транзисторного каскада —

72%. Эти показатели достигаются только тогда, когда выходная мощность P равна максимально возможной мощности для данного сопротивления нагрузки Pмакс(Rн). С уменьшением выходной мощности КПД падает, а абсолютные потери энергии в усилителе возрастают. При выходной мощности, равной 1/3 Pмакс(Rн), потери реального транзисторного каскада достигают абсолютного максимума в 46% от Pмакс(Rн), а КПД каскада уменьшается до 40 %. С дальнейшим уменьшением выходной мощности абсолютные потери энергии уменьшаются, но КПД продолжает снижаться.

Максимальная выходная мощность на данной нагрузке определяется напряжением питания выходного каскада усилителя.

image

Общая схема усилителей класса B

Усилители класса D

В усилителях класса D форма тока выходных транзисторов имеет вид прямоугольных импульсов, транзистор либо заперт, либо открыт полностью. Сопротивление открытого канала силовых МДП-транзисторов близко к “0” (единицы миллиОм), поэтому, можно считать (в первом приближении), что в режиме D транзистор работает без потерь мощности. КПД реальных усилителей мощности класса D составляет 90…95%. Причем КПД мало зависит от выходной мощности (при мощности близкой к 1 Вт усилитель класса D проигрывает в потреблении усилителю класса B).

Простейшая и наиболее распространённая схема усилителя класса D – схема с синхронной широтно-импульсной модуляцией (ШИМ). Аналоговая ШИМ не позволяет добиться низких значений нелинейных искажений.

image

Общая схема усилителей класса D

Усилители класса H

Усилители класса H – усилители (класса B) с плавно изменяющимся напряжением источника питания. При малых уровнях выходного сигнала усилитель подключен к «обычным» шинам с низким напряжением питания. При росте выходного напряжения напряжение на шинах питания увеличивается, поддерживая минимально необходимое падение напряжения на активном транзисторе. В простейшем варианте класса H используется конденсатор вольтодобавки, заряжаемый от основной шины источника питания. В более сложных схемах применяется встроенный преобразователь напряжения, накачивающий конденсаторы вольтдобавки до требуемых значений.

Усилители мощности звуковой частоты класса TD

Класс TD является торговой маркой шведской компании Lab.gruppen. “Следящий класс D” – подвид класса D и класса H: усилитель класса B, питаемый напряжением ЗЧ (звуковой частоты), вырабатываемый усилителем класса D.

Усилители класса TD – усилитель класса B (“чистый” усилитель) источником питания для которого является усилитель класса D (“грязный” усилитель). При этом такой гибридный усилитель имеет характеристики класса B (нелинейные искажения) и КПД

65% во всем диапазоне мощностей.

Важнейший показатель качества усилителя – линейность выходного сигнала (минимальные нелинейные искажения).

image

В усилителях класса TD питание управляется звуковым сигналом и почти полностью соответствует его форме, позволяя достичь высоких значений КПД

Аудиофилькина грамота: немного букв о критериях качества, характеристиках и классах HI-FI усилителей

В комментариях к предыдущим статьям возникало масса вопросов относительно выбора HI-FI усилителя. Судя по комментариям и специфическим форумам, на текущий момент актуальны вопросы о критериях качества звука при выборе современных усилителей, о паспортных характеристиках, значимых при покупке, о зависимости качества (верности воспроизведения) от класса усилителя. Отдельно спрашивают о том, действительно ли все усилители класса D хуже, чем усилители других классов. Под катом краткие ответы на эти вопросы.

image

Критерии качества и проблема компетенций потребителя

Существует несколько подходов потребительского определения качества, но ни один не дает гарантию удачной покупки. Если верность воспроизведения и мощность (громкость) можно оценить субъективно, то с надежностью и стабильностью параметров могут возникнуть проблемы. Сталкивался даже со случаями, когда очень прилично звучащие дорогие усилители малоизвестных high end производителей начинали работать как генераторы, начинали издавать гул в приступе самовозбуждения.

Если не вдаваться в подробности, то для понимания качества продукта следует обладать минимальными познаниями в схемотехнике усилителей и физике процессов, на которых они построены, иметь на руках схему конкретного усилителя и знать об особенностях элементов, использованных в конструкции устройства. Т.е. в идеале для такой оценки нужно быть инженером или как минимум опытным радиолюбителем. Большинство покупателей такими компетенциями не обладает. Это дает возможность для многочисленных маркетинговых манипуляций, начиная от внешнего вида устройства, заканчивая манипулятивным подходом к измерениям базовых параметров.

Формальными критериями качества усилителя для потребителя являются данные мануалов или даташитов. Следует помнить, что они отражают реальную картину лишь в том случае, если измерения проведены в рамках принятых стандартов и там обязательно должна быть указана мощность устройства, диапазон воспроизводимых частот и неравномерность АЧХ, коэффициент нелинейных искажений, соотношение сигнал/взвешенный шум, перечислены аналоговые и цифровые интерфейсы. Реже в документации можно встретить данные о демпфинг-факторе, переходном затухании между каналами и различии усиления каналов.

Мощность

Любые данные в даташитах могут искажаться с целью маркетингового манипулирования. Чаще это происходить с мощностью, о чем мы писали здесь. Так, вместо RMS и DIN, которые имеют четкие критерии расчета, могут использоваться термины вроде program power, которые, по сути, ничего не значат, так как методика расчета мощности известна только создателям усилителя. Тут имеет смысл посмотреть на значение потребляемой мощности, если она приблизительно равна, незначительно больше, и тем более, если меньше заявленной program power, то данные о мощности явно искажены, а использованная методика измерения не дает увидеть сколько-нибудь реальной картины.

Для потребителя это означает, что следует искать в указание RMS и то, что ориентироваться на значение Program power нельзя, т.к. это значение фактически означает т.н. маркетинговую мощность устройства. Достоверные значения это:

DIN — значение мощности на реальной нагрузке (для усилителя), ограниченной появлением нелинейных искажений. Измеряется подачей сигнала с частотой 1 кГц на вход устройства в течение 10 минут. Мощность замеряется при достижении 1 % THD (КНИ). Этот стандарт расчета мощности идентичен японскому стандарту EIAJ, принятому Electronic Industries Association of Japan.

DIN Music Power описывает значение длительной нагрузки музыкальным сигналом без риска повреждения. IEC Power — тот же DIN Music Power, но со строго определённой длительностью измерений в 100 часов.

RMS (Rated Maxmum Sinusoidal) — максимальная (предельная) синусоидальная мощность, при которой усилитель или колонка может работать в течение одного часа с реальным музыкальным сигналом без физического повреждения. Обычно на 20 — 25 % выше DIN. RMS практически аналогичен AES power, определённый стандартом AES2-1984.

В советской и российской документации также можно встретить параметр “Номинальная мощность” — он определяется при среднем положении регулятора громкости усилителя, при которой остальные параметры устройства соответствуют заявленным в техническом описании. Это манипулятивный показатель, как и program power, так как может измеряться при наиболее выгодном значении нелинейных искажений и может подгоняться под действующие стандарты. Что интересно, при всей манипулятивности “Советский номинал”, как правило, ниже прочих значений, например, номинальная мощность 35 Вт приблизительно соответствует 110 Вт RMS (AES power), 90 Вт — IEC Power (DIN Music Power). Значения Program power обычно в два раза (и более) больше RMS, т.е. 35 Вт номинала могут соответствовать 220 Вт Program power.

АЧХ и частотный диапазон

Ещё интересней с частотным диапазоном. Известно, что человек способен слышать частоты от 20 Гц до 20 кГц, при этом в музыкальном сигнале HiRes форматов могут сохраняться ультразвуковые составляющие записи. При этом, очевидно, что широкий частотный диапазон усилителя создается не просто так. Повышение верхнего порога частотного диапазона — это способ улучшить переходную характеристику усилителя, так как области верхних частот соответствует переходная характеристика в области малых времен. Подробнее об этом здесь.

Так, действующие до настоящего времени ГОСТ 24388-88. Усилители сигналов звуковой частоты бытовые. Общие технические условия, частично заимствованный из немецкого стандарта DIN 45500 1977 года и доработанный, предполагает для усилителей нулевой группы сложности (т.е. высокой верности воспроизведения) частотный диапазон 10 до 40000 Гц, а для усилителей первой группы сложности — от 20 до 25000 Гц.

При этом неравномерность в стандарте указывается как раз в диапазоне слышимых частот и должна составлять не больше ±0,3 дБ для нулевой и ±0,5 для первой группы. Актуальным международным стандартом для усилителей является IEC 60268-3: 2018, нормы стандарта относительно АЧХ практически идентичны российскому (советскому) ГОСТ и немецкому DIN 45500.

Для потребителя это означает, что имеет смысл выбирать усилитель с диапазоном воспроизводимых частот как минимум от 20 Гц до 20 кГц с неравномерностью АЧХ не более ±0,5 дБ. Также, если верность воспроизведения очень критична, имеет смысл выбирать усилитель с диапазоном от 10 Гц до 40 кГц (и выше) и неравномерностью в слышимом спектре (от 20 Гц до 20 кГц) не более ±0,3 дБ. Подчеркну, не потому, что покупатель стал летучей мышью и слышит выше 20 кГц, а от того, что расширение частотного диапазона улучшает переходную характеристику.

КНИ (THD)

К значимой характеристике усилителя, которая объективно говорит о качестве, относится коэффициент гармонических (нелинейных) искажений (total harmonic distortion), согласно того же советского стандарта для предварительных и интегральных усилителей (как отдельных устройств) он должен составлять до 0,005% и для усилителей мощности до 0,007% для нулевой группы. А также 0,05% и 0,07%, соответственно, для первой группы. Как и в случае с АЧХ, аналогичные требования существуют во всех современных (и не очень) мировых стандартах для аудиоаппаратуры высокой верности воспроизведения.

Для потребителя это означает, что имеет смысл искать усилитель со значением КНИ с максимальным значением КНИ от 0,07%, а при высоких притязаниях и аудиофильских требованиях к верности воспроизведения 0,007% и ниже. Надо сказать, что найти такой усилитель достаточно просто, так как большинство современных могут похвастаться сравнительно низким КНИ.

Надо отметить, что помимо гармонических искажений, усилительная аппаратура является источником интермодуляционных, которые крайне редко попадают в даташиты, а между тем, серьезно вредят верности воспроизведения, воспринимаются, как замыленность звука. Стандарт DIN 45500, считающийся источником норм для аппаратуры HI-FI-класса, определял, что для усилителей высокой верности воспроизведения “коэффициент интермодуляционных искажений (IMD) в полосе воспроизводимых частот 250—8000 Гц (также вне этой полосы при снижении уровня звукового давления на 6 дБ)”, не должен превышать 3 %.

Из 400 даташитов и мануалов усилителей, которые мне доводилось видеть за последнее время, значения IMD были указаны в пяти, все они стояли больше 100К рублей. И дело даже не в том, что производитель во чтобы-то ни стало пытается скрыть истину, а в том, что измерение дополнительного параметра, о котором знает от силы 0,1% потребителей массовой техники, расценивается как не очень рациональное решение.

Для потребителя это означает, что скорее всего даже в документах достаточно дорогих устройств он этого параметра не найдёт. Определить интермодуляции можно на слух для этого достаточно использовать записи детского и женского дикант хора. Нужно постараться сконцентрировать внимание на отдельных голосах, если этого сделать не удаётся, а отдельные голоса слышаться не четко — вероятно, речь идёт о достаточно большом коэффициенте интермодуляционных искажений. Важно также понимать, что их источником может быть не усилитель, а акустическая система, поэтому для этого субъективного теста имеет смысл использовать лучшую из возможных акустических систем либо сравнение с неким эталонным усилителем на одной акустической системе.

Отношение сигнал/взвешенный шум

Отношение сигнал/взвешенный шум — параметр усилителей, демонстрирующий уровень шума при отсутствии сигнала. В соответствии с упоминавшимися стандартами, соотношение сигнал/взвешенный шум должно быть не менее 80 — 90 дБ для предварительных и интегральных HI-FI усилителей и 100 — 110 для усилителей мощности высокой верности. Минимальным значением для предварительных и интегральных усилителей является 63 дБ и для усилителей мощности — 86 дБ. Надо сказать, что с этим параметром у большинства современных усилителей полный порядок, и если значения существенно отличаются от приведённых выше, можно говорить, что речь идёт явно об устройстве низкого качества.

Потребителю имеет смысл обратить внимание на соотношение сигнал/взвешенный шум, так как попытки сделать схемотехническое решение дешевле или не очень профессиональный подход к разводке печатной платы в современной аппаратуре иногда дают плачевные результаты. Важно, чтобы значение было как минимум 60-80 дБ, для притязательных меломанов следует ориентироваться на 90 дБ и выше.

Ламповые чудеса

Иногда в дорогих ламповых устройствах показатель сигнал/взвешенный шум ниже, в силу несовершенства архаичных схемотехнических решений, когда этот параметр отдается в “жертву” ради каких-либо других полезных, с точки зрения создателей или эксцентричных потребителей, эффектов, например, какого-то характерного звучания, которое оценивают, как более “музыкальное”, “тёплое”, “жанрово совместимое”. К слову, аналогичная история происходит с нелинейными искажениями. Так, коэффициент гармоник даже в сверхдорогих ламповых усилителях может достигать 3 и даже 5%.

Классы усилителей

Традиционно считается, что наибольшей верностью воспроизведения обладают усилители класса A. В теории, простая схемотехника и, как правило, однотактный режим работы без отсечки сигнала позволяет свести к минимуму нелинейные искажения (как THD, так и IMD), а также уменьшить порядок гармоник. Обратной стороной решения являются крошечные КПД, которые редко превышают 15 — 17%, а соответственно, дополнительными проблемами становятся громадные размеры и масса. Закономерно растет и энергопотребление.

Для потребителей, стремящихся к максимальной верности воспроизведения, не стесненных в средствах и не опасающихся огромной массы и габаритов — этот вариант идеален. Для всех остальных не рационален и неприемлем.

В классе B, режим работы двухтактный, элемент (лампа, npn-транзистор) воспроизводит либо положительные, либо отрицательные(pnp-транзисторы) входные сигналы. При этом угол проводимости равен 180° или незначительно превосходит эту величину, в связи с чем растут IMD и THD. Достоинством режима является сравнительно высокий КПД, который в теории может достигать 75%. Сегодня этот класс почти полностью заменили усилители класса D класса A/B.

Из класса АВ, понятно, что это попытка объединить высокий КПД и низкий коэффициент нелинейных искажений. Чтобы отказаться от ступенчатого перехода, существующего в классе B, применяют угол отсечки 90 градусов и более при переключении усилительных элементов. Соответственно, рабочая точка находится в начале линейного участка вольтамперной характеристики. По этой причине исключается запирание усилительных элементов и через них протекает ток покоя, порой достаточно значительный. Это несколько снижает КПД, по сравнению с классом B, но значительно уменьшает нелинейные искажения. Недостатком этого класса является незначительная проблема стабилизации тока покоя, которая решается различными способами.

Самым распространенным, дешевым и высокопроизводительным, а также одним из самых спорных классов усилителей, является класс D. Такие усилители часто называют цифровыми, так как для усиления используется ШИМ-модуляция. Они состоят из блока фильтрации, 4-х канального ШИМ-контроллера, усилителя тока, выходного НЧ-фильтра, блока защит и блока питания. Ключевое достоинство: предельно высокий, по сравнению с другими классами КПД, в теории способный достигать 90% и более. Также класс D имеет ряд проблем, а именно:

  • Нелинейности, вызванные способом модуляции (ошибки тактирования).
  • Несоответствие временных характеристик цепей управления выходными транзисторами.
  • Нелинейность LC-фильтра низких частот.
  • Электромагнитные наводки, в.т.ч. помехи от источника питания.

Сухой остаток

Основными критериями качества для усилителей являются такие параметры, как мощность, АЧХ, THD. Также имеет смысл обратить внимание на IMD и соотношение сигнал/взвешенный шум. Стандартами, созданными в разных странах за после 40 лет описаны значения этих, которым должны соответствовать усилители высокой верности воспроизведения, к таким стандартам относятся DIN 45500, ГОСТ 24388-88, IEC 60581, IEC 60268-3: 2018, в соответствии с нормами которых созданы большинство современных усилителей. Усилитель высокой верности воспроизведения можно построить в любом классе, в том числе и в классе D, которые в настоящий момент являются наиболее распространёнными. Я постарался выбрать критерии наиболее значимые для верности воспроизведения усилителя. Описал безусловно не все, так демпфинг фактор, разделение каналов по усилению и переходное затухание между стереоканалами я оставил для других материалов. Если вам есть, что добавить — буду искренне признателен за дополнительные сведения в комментариях.

В нашем каталоге представлен широкий ассортимент разнообразной электроники: наушников, усилителей, акустических систем, телевизоров и других устройств, мы также не обошли стороной приверженцев божественного звука.

Ссылка на основную публикацию
Похожее